### Asking questions
<- glmer(gender_questioner_female ~ (1|session_id/talk_id), data = data_analysis_tr, family = binomial, offset = boot::logit(audience_women_prop))
man_ask_null
<- glmer(gender_questioner_female ~ -1 + condition + (1|session_id/talk_id), data = data_analysis_tr, family = binomial, offset = boot::logit(audience_women_prop))
man_ask
# LRT
drop1(test="Chisq",man_ask)
Single term deletions
Model:
gender_questioner_female ~ -1 + condition + (1 | session_id/talk_id)
npar AIC LRT Pr(Chi)
<none> 294.73
condition 1 294.87 2.1355 0.1439
summary(man_ask)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: gender_questioner_female ~ -1 + condition + (1 | session_id/talk_id)
Data: data_analysis_tr
Offset: boot::logit(audience_women_prop)
AIC BIC logLik deviance df.resid
294.7 308.3 -143.4 286.7 216
Scaled residuals:
Min 1Q Median 3Q Max
-1.5555 -0.9521 0.6339 0.9046 1.4779
Random effects:
Groups Name Variance Std.Dev.
talk_id:session_id (Intercept) 0 0
session_id (Intercept) 0 0
Number of obs: 220, groups: talk_id:session_id, 90; session_id, 38
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
conditionF -0.6561 0.2039 -3.219 0.00129 **
conditionM -0.2514 0.1880 -1.337 0.18112
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
cndtnF
conditionM 0.000
optimizer (Nelder_Mead) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
<- collect_out(model = man_ask, null = man_ask_null, name = "QA_mani_asking", n_factors = 2, type = "exp", save="yes", dir="../results/question-asking/")
m_qa_man_ask
%>% t() %>% kbl() %>%
m_qa_man_ask kable_classic_2()
model_name | QA_mani_asking |
AIC | 294.732 |
n_obs | 220 |
lrt_pval | 0.144 |
lrt_chisq | 2.135 |
n_factors | 2 |
est_conditionF | -0.656 |
est_probabitily_conditionF | 0.342 |
lowerCI_conditionF | -1.056 |
higherCI_conditionF | -0.257 |
pval_conditionF | 0.001 |
zval_conditionF | -3.219 |
est_conditionM | -0.251 |
est_probabitily_conditionM | 0.437 |
lowerCI_conditionM | -0.62 |
higherCI_conditionM | 0.117 |
pval_conditionM | 0.181 |
zval_conditionM | -1.337 |
### Raising hands
# remove when no hands when were raised, only men or only women
<- subset(data_analysis_tr, hands_total > 0 & !is.na(hands_women) & !is.na(hands_men) &
data_analysis_tr_hands !is.na(hands_total))
<- glmer(cbind(hands_women, hands_men) ~ (1|session_id/talk_id), data = data_analysis_tr_hands, family = binomial, offset = boot::logit(audience_women_prop))
man_hands_null
<- glmer(cbind(hands_women, hands_men) ~ -1 + condition + (1|session_id/talk_id), data = data_analysis_tr_hands, family = binomial, offset = boot::logit(audience_women_prop))
man_hands
summary(man_hands)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula:
cbind(hands_women, hands_men) ~ -1 + condition + (1 | session_id/talk_id)
Data: data_analysis_tr_hands
Offset: boot::logit(audience_women_prop)
AIC BIC logLik deviance df.resid
330.6 343.9 -161.3 322.6 200
Scaled residuals:
Min 1Q Median 3Q Max
-1.6465 -0.7914 -0.1532 0.9407 1.6499
Random effects:
Groups Name Variance Std.Dev.
talk_id:session_id (Intercept) 0.11951 0.3457
session_id (Intercept) 0.01973 0.1405
Number of obs: 204, groups: talk_id:session_id, 85; session_id, 38
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
conditionF -0.9191 0.2038 -4.510 6.48e-06 ***
conditionM -0.6171 0.1752 -3.523 0.000427 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
cndtnF
conditionM 0.000
<- collect_out(model = man_hands, null = man_hands_null, name = "QA_mani_hands", n_factors = 2, type = "exp", save="yes", dir="../results/question-asking/")
m_qa_man_hands
%>% t() %>% kbl() %>%
m_qa_man_hands kable_classic_2()
model_name | QA_mani_hands |
AIC | 330.649 |
n_obs | 204 |
lrt_pval | 0.251 |
lrt_chisq | 1.32 |
n_factors | 2 |
est_conditionF | -0.919 |
est_probabitily_conditionF | 0.285 |
lowerCI_conditionF | -1.319 |
higherCI_conditionF | -0.52 |
pval_conditionF | 0 |
zval_conditionF | -4.51 |
est_conditionM | -0.617 |
est_probabitily_conditionM | 0.35 |
lowerCI_conditionM | -0.96 |
higherCI_conditionM | -0.274 |
pval_conditionM | 0 |
zval_conditionM | -3.523 |
## Getting chosen
# exclude cases where the host could not choose
<- subset(data_analysis_tr, hands_prop_women > 0 & hands_prop_women < 1)
data_analysis_tr_chosen
nrow(data_analysis_tr_chosen) #49
[1] 49
<- glmer(gender_questioner_female ~ (1|session_id/talk_id), data_analysis_tr_chosen, family = "binomial", offset = boot::logit(hands_prop_women))
man_chosen_null
<- glmer(gender_questioner_female ~ -1 + condition + (1|session_id/talk_id), data_analysis_tr_chosen, family = "binomial", offset = boot::logit(hands_prop_women))
man_chosen
summary(man_chosen)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: gender_questioner_female ~ -1 + condition + (1 | session_id/talk_id)
Data: data_analysis_tr_chosen
Offset: boot::logit(hands_prop_women)
AIC BIC logLik deviance df.resid
72.2 79.8 -32.1 64.2 45
Scaled residuals:
Min 1Q Median 3Q Max
-2.3525 -1.3582 0.7113 0.7362 1.0412
Random effects:
Groups Name Variance Std.Dev.
talk_id:session_id (Intercept) 2.434e-15 4.934e-08
session_id (Intercept) 0.000e+00 0.000e+00
Number of obs: 49, groups: talk_id:session_id, 32; session_id, 20
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
conditionF 0.6124 0.4481 1.366 0.172
conditionM 0.6815 0.4181 1.630 0.103
Correlation of Fixed Effects:
cndtnF
conditionM 0.000
optimizer (Nelder_Mead) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
<- collect_out(model = man_chosen, null = man_chosen_null, name = "QA_mani_chosen", n_factors = 2, type = "exp", save="yes", dir="../results/question-asking/")
m_qa_man_chosen
%>% t() %>% kbl() %>%
m_qa_man_chosen kable_classic_2()
model_name | QA_mani_chosen |
AIC | 72.233 |
n_obs | 49 |
lrt_pval | 0.91 |
lrt_chisq | 0.013 |
n_factors | 2 |
est_conditionF | 0.612 |
est_probabitily_conditionF | 0.648 |
lowerCI_conditionF | -0.266 |
higherCI_conditionF | 1.491 |
pval_conditionF | 0.172 |
zval_conditionF | 1.366 |
est_conditionM | 0.681 |
est_probabitily_conditionM | 0.664 |
lowerCI_conditionM | -0.138 |
higherCI_conditionM | 1.501 |
pval_conditionM | 0.103 |
zval_conditionM | 1.63 |